These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro splicing of cardiac troponin T precursors. Exon mutations disrupt splicing of the upstream intron.
    Author: Cooper TA.
    Journal: J Biol Chem; 1992 Mar 15; 267(8):5330-8. PubMed ID: 1544914.
    Abstract:
    A single cardiac troponin T (cTNT) gene generates two mRNAs by including or excluding the 30-nucleotide exon 5 during pre-mRNA processing. Transfection analysis of cTNT minigenes has previously demonstrated that both mRNAs are expressed from unmodified minigenes, and mutations within exon 5 can lead to complete skipping of the exon. These results suggested a role for exon sequence in splice site recognition. To investigate this potential role, an in vitro splicing system using cTNT precursors has been established. Two-exon precursors containing the alternative exon and either the upstream exon or downstream exon were spliced accurately and efficiently in vitro. The mutations within the alternative exon that resulted in exon skipping in vivo specifically blocked splicing of the upstream intron in vitro and had no effect on removal of the downstream intron. In addition, the splicing intermediates of these two precursors have been characterized, and the branch sites utilized on the introns flanking the alternative exon have been determined. Potential roles of exon sequence in splice site selection are discussed. These results establish a system that will be useful for the biochemical characterization of the role of exon sequence in splice site selection.
    [Abstract] [Full Text] [Related] [New Search]