These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage.
    Author: De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, Gemmati D, Caruso A.
    Journal: Osteoarthritis Cartilage; 2004 Oct; 12(10):793-800. PubMed ID: 15450529.
    Abstract:
    OBJECTIVE: To investigate the single and combined effects of electromagnetic field (EMF) exposure and the insulin growth factor-I (IGF-I) on proteoglycan (PG) synthesis of bovine articular cartilage explants and chondrocytes cultured in monolayers. DESIGN: Bovine articular cartilage explants and chondrocyte monolayers were exposed to EMF (75Hz; 1.5mT) for 24h in the absence and in the presence of both 10% fetal bovine serum (FBS) and IGF-I (1-100ng/ml). PG synthesis was determined by Na(2)-(35)SO(4) incorporation. PG release into culture medium was determined by the dimethylmethylene blue (DMMB) assay. RESULTS: In cartilage explants, EMF significantly increased (35)S-sulfate incorporation both in the absence and in the presence of 10% FBS. Similarly, IGF-I increased (35)S-sulfate incorporation in a dose-dependent manner both in 0% and 10% FBS. At all doses of IGF-I, the combined effects of the two stimuli resulted additive. No effect was observed on medium PG release. Also in chondrocyte monolayers, IGF-I stimulated (35)S-sulfate incorporation in a dose-dependent manner, both in 0% and 10% FBS, however, this was not modified by EMF exposure. CONCLUSIONS: The results of this study show that EMF can act in concert with IGF-I in stimulating PG synthesis in bovine articular cartilage explants. As this effect is not maintained in chondrocyte monolayers, the native cell-matrix interactions in the tissue may be fundamental in driving the EMF effects. These data suggest that in vivo the combination of both EMF and IGF may exert a more chondroprotective effect than either treatment alone on articular cartilage.
    [Abstract] [Full Text] [Related] [New Search]