These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alternative nitric oxide-producing substrates for NO synthases.
    Author: Mansuy D, Boucher JL.
    Journal: Free Radic Biol Med; 2004 Oct 15; 37(8):1105-21. PubMed ID: 15451052.
    Abstract:
    Nitric oxide (NO) is a key inter- and intracellular molecule involved in the maintenance of vascular tone, neuronal signaling, and host response to infection. The biosynthesis of NO in mammals involves a two-step oxidation of L-arginine (L-Arg) to citrulline and NO catalyzed by a particular class of heme-thiolate proteins, called NO-synthases (NOSs). The NOSs successively catalyze the Nomega-hydroxylation of the guanidine group of L-Arg with formation of Nomega-hydroxy-L-arginine (NOHA) and the oxidative cleavage of the CN(OH) bond of NOHA with formation of citrulline and NO. During the last decade, a great number of compounds bearing a CNH or CNOH function have been synthesized and studied as possible NO-producing substrates of recombinant NOSs. This includes derivatives of L-Arg and NOHA, N-alkyl (or aryl) guanidines, N,N'- or N,N-disubstituted guanidines, N-alkyl (or aryl) N'-hydroxyguanidines, N- (or O-) disubstituted N'-hydroxyguanidines, as well as amidoximes, ketoximes, and aldoximes. However, only those involving the NHC(NH2)=NH (or NOH) moiety have led to a significant formation of NO. All the N-monosubstituted N'-hydroxyguanidines that are well recognized by the NOS active site lead to NO with catalytic efficiences (kcat/Km) up to 50% of that of NOHA. This is the case of many N-aryl and N-alkyl N'-hydroxyguanidines, provided that the aryl or alkyl substituent is small enough to be accommodated by a NOS hydrophobic site located in close proximity of the NOS "guanidine binding site." As far as N-substituted guanidines are concerned, few compounds bearing a small alkyl group have been found to act as NO-producing substrates. The kcat value found for the best compound may reach 55% of the kcat of L-Arg oxidation. However, the best catalytic efficiency (kcat/Km) that was obtained with N-(4,4,4-trifluorobutyl) guanidine is only 100-fold lower than that of L-Arg. In a general manner, NOS II is a better catalyst that NOS I and III for the oxidation of exogenous guanidines and N-hydroxyguanidines to NO. This is particularly true for guanidines as the ones acting as substrates for NOS II have been found to be almost inactive for NOS I and NOS III. Thus, a good NO-producing guanidine substrate for the two latter isozymes remains to be found.
    [Abstract] [Full Text] [Related] [New Search]