These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural determinants of proton blockage in aquaporins. Author: Chakrabarti N, Roux B, Pomès R. Journal: J Mol Biol; 2004 Oct 15; 343(2):493-510. PubMed ID: 15451676. Abstract: Aquaporins are an important class of membrane channels selective for water and linear polyols but impermeable to ions, including protons. Recent computational studies have revealed that the relay of protons through the water-conduction pathway of aquaporin channels is opposed by a substantial free energy barrier peaking at the signature NPA motifs. Here, free-energy simulations and continuum electrostatic calculations are combined to examine the nature and the magnitude of the contribution of specific structural elements to proton blockage in the bacterial glycerol uptake facilitator, GlpF. Potential of mean-force profiles for both hop and turn steps of structural diffusion in the narrow pore are obtained for artificial variants of the GlpF channel in which coulombic interactions between the pore contents and conserved residues Asn68 and Asn203 at the NPA signature motifs, Arg206 at the selectivity filter, and the peptidic backbone of the two half-helices M3 and M7, which are arranged in head-to-head fashion around the NPA motifs, are turned off selectively. A comparison of these results with electrostatic energy profiles for the translocation of a probe cation throughout the water permeation pathway indicates that the free-energy profile for proton movement inside the narrow pore is dominated by static effects arising from the distribution of charged and polar groups of the channel, whereas dielectric effects contribute primarily to opposing the access of H+ to the pore mouths (desolvation penalty). The single most effective way to abolish the free-energy gradients opposing the movement of H+ around the NPA motif is to turn off the dipole moments of helices M3 and M7. Mutation of either of the two NPA Asn residues to Asp compensates for charge-dipole and dipole-dipole effects opposing the hop and turn steps of structural diffusion, respectively, and dramatically reduces the free energy barrier of proton translocation, suggesting that these single mutants could leak protons.[Abstract] [Full Text] [Related] [New Search]