These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetically determined resistance to collagenase action augments interstitial collagen accumulation in atherosclerotic plaques.
    Author: Fukumoto Y, Deguchi JO, Libby P, Rabkin-Aikawa E, Sakata Y, Chin MT, Hill CC, Lawler PR, Varo N, Schoen FJ, Krane SM, Aikawa M.
    Journal: Circulation; 2004 Oct 05; 110(14):1953-9. PubMed ID: 15451791.
    Abstract:
    BACKGROUND: We hypothesized that collagenolytic activity produced by activated macrophages contributes to collagen loss and the subsequent instability of atheromatous lesions, a common trigger of acute coronary syndromes. However, no direct in vivo evidence links collagenases with the regulation of collagen content in atherosclerotic plaques. METHODS AND RESULTS: To test the hypothesis that collagenases influence the structure of atheromata, we examined collagen accumulation in atherosclerotic lesions of apolipoprotein E-deficient mice (apoE-/-) that express collagenase-resistant collagen-I (ColR/R/apoE-/-, n=12) or wild-type collagen-expressing mice (Col+/+/apoE-/-, n=12). Aortic atheromata of both groups had similar sizes and numbers of macrophages, a major source of collagenases. However, aortic intimas from ColR/R/apoE-/- mice contained fewer smooth muscle cells, a source of collagen, probably because of decreased migration or proliferation or increased cell death. Despite reduced numbers of smooth muscle cells, atheromata of ColR/R/apoE-/- mice contained significantly more intimal collagen than did those of Col+/+/apoE-/- mice. CONCLUSIONS: These results establish that collagenase action regulates plaque collagen turnover and smooth muscle cell accumulation.
    [Abstract] [Full Text] [Related] [New Search]