These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans.
    Author: Eckmann CR, Crittenden SL, Suh N, Kimble J.
    Journal: Genetics; 2004 Sep; 168(1):147-60. PubMed ID: 15454534.
    Abstract:
    Germ cells can divide mitotically to replenish germline tissue or meiotically to produce gametes. In this article, we report that GLD-3, a Caenorhabditis elegans Bicaudal-C homolog, promotes the transition from mitosis to meiosis together with the GLD-2 poly(A) polymerase. GLD-3 binds GLD-2 via a small N-terminal region present in both GLD-3S and GLD-3L isoforms, and GLD-2 and GLD-3 can be co-immunoprecipitated from worm extracts. The FBF repressor binds specifically to elements in the gld-3S 3'-UTR, and FBF regulates gld-3 expression. Furthermore, FBF acts largely upstream of gld-3 in the mitosis/meiosis decision. By contrast, GLD-3 acts upstream of FBF in the sperm/oocyte decision, and GLD-3 protein can antagonize FBF binding to RNA regulatory elements. To address the relative importance of these two regulatory mechanisms in the mitosis/meiosis and sperm/oocyte decisions, we isolated a deletion mutant, gld-3(q741), that removes the FBF-binding site from GLD-3L, but leaves the GLD-2-binding site intact. Animals homozygous for gld-3(q741) enter meiosis, but are feminized. Therefore, GLD-3 promotes meiosis primarily via its interaction with GLD-2, and it promotes spermatogenesis primarily via its interaction with FBF.
    [Abstract] [Full Text] [Related] [New Search]