These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Use and role of invertebrate models in endocrine disruptor research and testing.
    Author: deFur PL.
    Journal: ILAR J; 2004; 45(4):484-93. PubMed ID: 15454687.
    Abstract:
    Historically, invertebrates have been excellent models for studying endocrine systems and for testing toxic chemicals. Some invertebrate endocrine systems are well suited for testing chemicals and environmental media because of the ease of using certain species, their sensitivity to toxic chemicals, and the broad choice of models from which to choose. Such assays will be useful in identifying endocrine disruptors to protect invertebrate populations and as screening systems for vertebrates. Hormone systems are found in all animal phyla, although the most simple animals may have only rudimentary endocrine systems. Invertebrate endocrine systems use a variety of types of hormones, including steroids, peptides, simple amides, and terpenes. The most well-studied hormone systems are the molting and juvenile hormones in insects, the molting hormones in crustaceans, and several of the neurohormones in molluscs and arthropods. These groups offer several options for assays that may be useful for predicting endocrine disruption in invertebrates. A few invertebrate phyla offer predictive capabilities for understanding vertebrate endocrine-disrupting chemicals. The echinoderms, and to a lesser extent molluscs, have closer evolutionary relationships with the vertebrates than the arthropods and these phyla. The recently identified estrogen receptor structure within the genome of the marine gastropod, Aplysia, indicates that the estrogens, and probably the basic steroid receptor, are quite old evolutionarily. This review of the recent literature confirms the effects of some endocrine-disrupting chemicals on invertebrates--tributyltin on snails, pesticides on insects and crustaceans, and industrial compounds on marine animals.
    [Abstract] [Full Text] [Related] [New Search]