These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the structure of carotenoid iodine complexes.
    Author: Lutnaes BF, Krane J, Liaaen-Jensen S.
    Journal: Org Biomol Chem; 2004 Oct 07; 2(19):2821-8. PubMed ID: 15455156.
    Abstract:
    Previous work on carotenoid-iodine complexes is briefly reviewed. The formation of iodine complexes of beta,beta-carotene and of (3R,3' R )-beta,beta-carotene-3,3'-diol (zeaxanthin) has been studied by modern methods including UV/VIS/NIR, IR MS, EPR, ENDOR and NMR (1H, 1H-1H COSY, TOCSY, 2D ROESY, 1H-13C HSQC and 1H-13C HMBC) spectroscopy, and chemical reactions monitored by HPLC, TLC and spectral analysis (VIS, MS, 1H NMR). beta,beta-Carotene formed a solid complex C40H56 x 4I with iodine in hexane and a solvent complex with lambdamax 1010 nm in chlorinated solvents. Iodine was not covalently bound to the carotene. Spectroscopic and chemical evidence is consistent with the representation of the beta,beta-carotene-iodine complex containing iodine in a pi complex with cationic/radical cationic properties. Extensive E/Z isomerisation was noted for all quenching products obtained in acetone, with thiosulfate, by dilution, or by reaction with nucleophile (MeOH). Key products obtained from the beta,beta-carotene-iodine complex were 4',5'-didehydro-4,5'-retro-beta,beta-carotene (isocarotene) and 4-methoxy-beta,beta-carotene. The zeaxanthin-iodine complex was not suitable for a practical synthesis of (3S,3'S)-4',5'-didehydro-4,5'-retro-beta,beta-carotene-3,3'-diol (eschscholtzxanthin).
    [Abstract] [Full Text] [Related] [New Search]