These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. Author: Croughwell N, Smith LR, Quill T, Newman M, Greeley W, Kern F, Lu J, Reves JG. Journal: J Thorac Cardiovasc Surg; 1992 Mar; 103(3):549-54. PubMed ID: 1545554. Abstract: The effect of temperature on cerebral blood flow and metabolism was studied in 41 adult patients scheduled for operations requiring cardiopulmonary bypass. Plasma levels of midazolam and fentanyl were kept constant by a pharmacokinetic model-driven infusion system. Cerebral blood flow was measured by xenon 133 clearance (initial slope index) methods. Cerebral blood flow determinations were made at 27 degrees C (hypothermia) and 37 degrees C (normothermia) at constant cardiopulmonary bypass pump flows of 2 L/min/m2. Blood gas management was conducted to maintain arterial carbon dioxide tension (not corrected for temperature) 35 to 40 mm Hg and arterial oxygen tension of 150 to 250 mm Hg. Blood gas samples were taken from the radial artery and the jugular bulb. With decreased temperature there was a significant (p less than 0.0001) decrease in the arterial venous-oxygen content difference, suggesting brain flow in excess of metabolic need. For each patient, the cerebral metabolic rate of oxygen consumption at 37 degrees C and 27 degrees C was calculated from the two measured points at normothermia and hypothermia with the use of a linear relationship between the logarithm of cerebral metabolic rate of oxygen consumption and temperature. The temperature coefficient was then computed as the ratio of cerebral metabolic rate of oxygen consumption at 37 degrees C to that at 27 degrees C. The median temperature coefficient for man on nonpulsatile cardiopulmonary bypass is 2.8. Thus reducing the temperature from 37 degrees to 27 degrees C reduces cerebral metabolic rate of oxygen consumption by 64%.[Abstract] [Full Text] [Related] [New Search]