These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study of patient positioning on a dynamic frame for scoliosis surgery. Author: Duke K, Dansereau J, Labelle H, Koller A, Joncas J, Aubin CE. Journal: Stud Health Technol Inform; 2002; 91():144-8. PubMed ID: 15457712. Abstract: The goal of this clinical trial was to measure patient geometry on a dynamic positioning frame in various prone positions. Fourteen subjects (2 males and 12 females) were recruited from the scoliosis clinic at Ste-Justine Hospital on a volunteer basis. The subjects were AIS patients who were potential candidates for surgery. The Cobb angle, averaged 50 degrees (32 degrees-64 degrees). The mean age was 14.1 years (11-17). A Polaris system (Northern Digital inc, Canada) with 10 passive reflective markers was used to measure various indices of the patient's trunk geometry. Acquisitions were made while the unanaesthetized patient was in five different prone positions: I similar to the standard positioning on a Relton-Hall frame; II addition of a force applied to the ribcage at the apex of the curve; III application of a force at the apex of the curve in the lumbar region; IV, the shoulder pads were elevated to increase the patient's kyphosis; V adjustment of each pad and the application of thoracic and lumbar forces to obtain an optimal correction. The measurements of trunk geometry at each position were compared using position I as a base. A paired student t-test determined a significant difference between positions. When comparing position I to position II there was a significant difference and correction of the rib hump. There was also a significant change in shoulder angle that resulted in over correction. Position III had a significantly negative change in the rib hump. During position IV, there was a measurable increase in kyphosis. During the optimal correction, position V, a significant increase in spine length was observed as well as a significant correction in rib hump and shoulder angle. Patient trunk geometry can be improved by the application of different forces on a dynamic positioning frame. Caution is necessary as over correction and unintended negative effects were observed. The optimal patient position has not yet been found and future studies are directed at determining this.[Abstract] [Full Text] [Related] [New Search]