These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A single transcription factor binds to two divergent sequence elements with a common function in cardiac myosin light chain-2 promoter.
    Author: Qasba P, Lin E, Zhou MD, Kumar A, Siddiqui MA.
    Journal: Mol Cell Biol; 1992 Mar; 12(3):1107-16. PubMed ID: 1545792.
    Abstract:
    The cardiac myosin light chain-2 (MLC-2) gene promoter contains several positive and negative cis-acting sequences that are involved in the regulation of its expression. We describe here the properties of two activator sequences, elements A and P, and their DNA-binding factors (ABFs). Element A (CCAAAAGTGG), located at -61, has homology with the evolutionarily conserved sequence CC(A/T)6GG, present in the genes of many contractile proteins. Element P (TAACCTTGAAAGC), located 114 bp upstream of element A, is conserved in both chicken and rat cardiac MLC-2 gene promoters. Deletion mutagenesis demonstrated that these two elements are involved in the positive regulation of MLC-2 gene transcription. At least two sequence-specific element A-binding proteins, ABF-1 and ABF-2, were identified by gel shift analysis of the fractionated cardiac nuclear proteins. ABF-1 binds to element A with strict dependence on the internal element A sequence AAAAGT. In contrast, ABF-2 exhibits a relaxed sequence requirement, as it recognizes the consensus CArG and CCAAT box sequences as well. ABF-2 also recognizes the distal element P despite the fact that the sequences of elements A and P are divergent. DNase I footprinting, methylation interference, and gel shift analyses demonstrated unequivocally that the element A-DNA affinity-purified protein ABF-2 binds to element P with sequence specificity. Since both elements A and P play a positive regulatory role in MLC-2 gene transcription and bind to a single protein (ABF-2), it would appear that ABF-2 is a key transcription factor with the ability to recognize divergent sequence elements involved in a common regulatory pathway during myogenesis.
    [Abstract] [Full Text] [Related] [New Search]