These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hepatocyte nuclear factor 1 and C/EBP are essential for the activity of the human apolipoprotein B gene second-intron enhancer. Author: Brooks AR, Levy-Wilson B. Journal: Mol Cell Biol; 1992 Mar; 12(3):1134-48. PubMed ID: 1545795. Abstract: The tissue-specific transcriptional enhancer of the human apolipoprotein B gene contains multiple protein-binding sites spanning 718 bp. Most of the enhancer activity is found in a 443-bp fragment (+621 to +1064) that is located entirely within the second intron of the gene. Within this fragment, a 147-bp region (+806 to +952) containing a single 97-bp DNase I footprint exhibits significant enhancer activity. We now report that this footprint contains four distinct protein-binding sites that have the potential to bind nine distinct liver nuclear proteins. One of these proteins was identified as hepatocyte nuclear factor 1 (HNF-1), which binds with relatively low affinity to the 5' half of a 20-bp palindrome located at the 5' end of the large footprint. A binding site for C/EBP (or one of the related proteins that recognize similar sequences) was identified in the center of the 97-bp footprint. This binding site is coincident or overlaps with the binding sites for five other proteins, two of which appear to be distinct from the C/EBP-related family of proteins. The binding site for a nuclear factor designated protein I is located between the HNF-1 and C/EBP binding sites. Finally, the 3'-most 15 bp of the footprinted sequence contain a binding site for another nuclear protein, which we have called protein II. Mutations that abolish the binding of either HNF-1, protein II, or the C/EBP-related proteins severely reduce enhancer activity. However, deletion experiments demonstrated that neither the HNF-1-binding site alone, nor the combination of binding sites for HNF-1, protein I, and C/EBP, nor the C/EBP-binding site plus the protein II-binding site is sufficient to enhance transcription from a strong apolipoprotein B promoter. Rather, HNF-1 and C/EBP act synergistically with protein II to enhance transcription of the apolipoprotein B gene.[Abstract] [Full Text] [Related] [New Search]