These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assembly of major histocompatibility complex (MHC) class II transcription factors: association and promoter recognition of RFX proteins. Author: Burd AL, Ingraham RH, Goldrick SE, Kroe RR, Crute JJ, Grygon CA. Journal: Biochemistry; 2004 Oct 12; 43(40):12750-60. PubMed ID: 15461447. Abstract: Major histocompatibility complex (MHC) class II genes are regulated at the transcriptional level by coordinate action of a limited number of transcription factors that include regulatory factor X (RFX), class II transcriptional activator (CIITA), nuclear factor Y (NF-Y), and cyclic AMP-response element binding protein (CREB). Here, the MHC class-II-specific transcription factors and CREB were expressed in insect cells with recombinant baculoviruses, isolated, and characterized by biochemical and biophysical methods. Analytical ultracentrifugation (AUC) has demonstrated that RFX is a heterotrimer. A heterodimer of RFX5 and RFX-AP was also observed. A high-affinity interaction (K(d) = 25 nM) between RFX5 and RFX-AP was measured by isothermal titration calorimetry (ITC), while the interaction between RFX-AP and RFX-ANK is at least an order of magnitude weaker. The biophysical data show that the interaction between RFX-AP and RFX5 is a key event in the assembly of the heterotrimer. Fluorescence anisotropy was used to determine protein-nucleic acid binding affinities for the RFX subunits and complexes binding to duplex DNA. The RFX5 subunit was found to drive recognition of the promoter, while the auxiliary RFX-AP and RFX-ANK subunits were shown to contribute to the specificity of binding for the overall complex. AUC experiments demonstrate that in the absence of additional subunits, monomeric RFX5 binds to X-box DNA with a 1:1 stoichiometry. Interactions between CREB, CIITA, and RFX in the absence of DNA were demonstrated using bead-based immunoprecipitation assays, confirming that preassociation with DNA is not required for forming the macromolecular assemblies that drive MHC class II gene expression.[Abstract] [Full Text] [Related] [New Search]