These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium-induced conformational changes in the C-terminal half of gelsolin stabilize its interaction with the actin monomer.
    Author: Khaitlina S, Walloscheck M, Hinssen H.
    Journal: Biochemistry; 2004 Oct 12; 43(40):12838-45. PubMed ID: 15461456.
    Abstract:
    The basic mechanism for the nucleating effect of gelsolin on actin polymerization is the formation of a complex of gelsolin with two actin monomers. Probably due to changes in the C-terminal part of gelsolin, a stable ternary complex is only formed at [Ca(2+)] >10(-5) M [Khaitlina, S., and Hinssen, H. (2002) FEBS Lett. 521, 14-18]. Therefore, we have studied the binding of actin monomer to the isolated C-terminal half of gelsolin (segments 4-6) over a wide range of calcium ion concentrations to correlate the conformational changes to the complex formation. With increasing [Ca(2+)], the apparent size of the C-terminal half as determined by gel filtration was reduced, indicating a transition into a more compact conformation. Moreover, Ca(2+) inhibited the cleavage by trypsin at Lys 634 within the loop connecting segments 5 and 6. Though the inhibitory effect was observed already at [Ca(2+)] of 10(-7) M, it was enhanced with increasing [Ca(2+)], attaining saturation only at >10(-4) M Ca(2+). This indicates that the initial conformational changes are followed by additional molecular transitions in the range of 10(-5)-10(-4) M [Ca(2+)]. Consistently, preformed complexes of actin with the C-terminal part of gelsolin became unstable upon lowering the calcium ion concentrations. These data provide experimental support for the role of the type 2 Ca-binding sites in gelsolin segment 5 proposed by structural studies [Choe et al. (2002) J. Mol. Biol. 324, 691]. We assume that the observed structural transitions contribute to the stable binding of the second actin monomer in the ternary gelsolin-actin complex.
    [Abstract] [Full Text] [Related] [New Search]