These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains.
    Author: Schimanski LA, Nguyen PV.
    Journal: Neurosci Biobehav Rev; 2004 Sep; 28(5):463-83. PubMed ID: 15465135.
    Abstract:
    Inbred mouse strains differ in genetic makeup and display diverse learning and memory phenotypes. Mouse models of memory impairment can be identified by examining hippocampus-dependent memory in multiple strains. These mouse models may be used to establish the genetic, molecular, and cellular correlates of deficits in learning or memory. In this article, we review research that has characterized hippocampal learning and memory in inbred mouse strains. We focus on two well-established behavioral tests, contextual fear conditioning and the Morris water maze (MWM). Selected cellular and molecular correlates of good and poor memory performance in inbred strains are highlighted. These include hippocampal long-term potentiation, a type of synaptic plasticity that can influence hippocampal learning and memory. Further methods that might help to pinpoint the anatomical loci, and genetic and cellular/molecular factors that contribute to memory impairments in inbred mice, are also discussed. Characterization of inbred mouse strains, using multidisciplinary approaches that combine cellular, genetic, and behavioral techniques, can complement directed mutagenesis to help identify molecular mechanisms for normal and abnormal memory functions.
    [Abstract] [Full Text] [Related] [New Search]