These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings.
    Author: Ohlund J, Näsholm T.
    Journal: Tree Physiol; 2004 Dec; 24(12):1397-402. PubMed ID: 15465702.
    Abstract:
    Plants possess regulatory mechanisms that enhance nitrogen (N) uptake under conditions of spatial and temporal variation in N availability. Study of regulatory mechanisms has focused almost exclusively on the uptake of inorganic N sources (i.e., ammonium (NH4+), nitrate (NO3-). Several lines of evidence, however, suggest that amino acids may constitute a potential source of N for a number of plant species, including conifers. In the present study, we investigated the uptake of amino acids and inorganic N in Scots pine (Pinus sylvestris L.) seedlings grown at different N concentrations. We compared the uptake rate of the individual N sources using U-[13C2], [15N]-glycine, U-[13C6], [15N4]-arginine, 15NH4, or 15NO3, and tested the short-term effect of N supply on the uptake rate of glycine, arginine and in field-grown Scots pine seedlings. Our data indicate that Scots pine seedlings can absorb substantial amounts of N in the form of intact arginine and glycine molecules. The data also suggest that Scots pine seedlings down-regulate their uptake of NH4+-N and arginine-N, but not of glycine-N in response to increased endogenous N concentrations.
    [Abstract] [Full Text] [Related] [New Search]