These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Author: Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL. Journal: Circulation; 2004 Oct 12; 110(15):2233-40. PubMed ID: 15466627. Abstract: BACKGROUND: Endothelin (ET)-1 is a potent vasoconstrictor that contributes to vascular remodeling in hypertension and other cardiovascular diseases. Endogenous ET-1 is produced predominantly by vascular endothelial cells. To directly test the role of endothelium-derived ET-1 in cardiovascular pathophysiology, we specifically targeted expression of the human preproET-1 gene to the endothelium by using the Tie-2 promoter in C57BL/6 mice. METHODS AND RESULTS: Ten-week-old male C57BL/6 transgenic (TG) and nontransgenic (wild type; WT) littermates were studied. TG mice exhibited 3-fold higher vascular tissue ET-1 mRNA and 7-fold higher ET-1 plasma levels than did WT mice but no significant elevation in blood pressure. Despite the absence of significant blood pressure elevation, TG mice exhibited marked hypertrophic remodeling and oxidant excess-dependent endothelial dysfunction of resistance vessels, altered ET-1 and ET-3 vascular responses, and significant increases in ET(B) expression compared with WT littermates. Moreover, TG mice generated significantly higher oxidative stress, possibly through increased activity and expression of vascular NAD(P)H oxidase than did their WT counterparts. CONCLUSIONS: In this new murine model of endothelium-restricted human preproET-1 overexpression, ET-1 caused structural remodeling and endothelial dysfunction of resistance vessels, consistent with a direct nonhemodynamic effect of ET-1 on the vasculature, at least in part through the activation of vascular NAD(P)H oxidase.[Abstract] [Full Text] [Related] [New Search]