These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c.
    Author: Kim KH, Song MJ, Yoo EJ, Choe SS, Park SD, Kim JB.
    Journal: J Biol Chem; 2004 Dec 10; 279(50):51999-2006. PubMed ID: 15466874.
    Abstract:
    Adipocyte determination- and differentiation-dependent factor 1 (ADD1) plays important roles in lipid metabolism and insulin-dependent gene expression. Because insulin stimulates carbohydrate and lipid synthesis, it would be important to decipher how the transcriptional activity of ADD1/SREBP1c is regulated in the insulin signaling pathway. In this study, we demonstrated that glycogen synthase kinase (GSK)-3 negatively regulates the transcriptional activity of ADD1/SREBP1c. GSK3 inhibitors enhanced a transcriptional activity of ADD1/SREBP1c and expression of ADD1/SREBP1c target genes including fatty acid synthase (FAS), acetyl-CoA carboxylase 1 (ACC1), and steroyl-CoA desaturase 1 (SCD1) in adipocytes and hepatocytes. In contrast, overexpression of GSK3beta down-regulated the transcriptional activity of ADD1/SREBP1c. GSK3 inhibitor-mediated ADD1/SREBP1c target gene activation did not require de novo protein synthesis, implying that GSK3 might affect transcriptional activity of ADD1/SREBP1c at the level of post-translational modification. Additionally, we demonstrated that GSK3 efficiently phosphorylated ADD1/SREBP1c in vitro and in vivo. Therefore, these data suggest that GSK3 inactivation is crucial to confer stimulated transcriptional activity of ADD1/SREBP1c for insulin-dependent gene expression, which would coordinate lipid and glucose metabolism.
    [Abstract] [Full Text] [Related] [New Search]