These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding.
    Author: Williamson G, Belshaw NJ, Williamson MP.
    Journal: Biochem J; 1992 Mar 01; 282 ( Pt 2)(Pt 2):423-8. PubMed ID: 1546955.
    Abstract:
    Functional peptides have been produced by proteolysis of glucoamylase (glucan 1,4-alpha-glucosidase; EC 3.2.1.3) from Aspergillus niger and purified by affinity chromatography, gel filtration and two ion-exchange-chromatography steps. The peptides correspond to residues 499-616 and 509-616 of the original glucoamylase molecule. Together with G1C (residues 471-616 from glucoamylase 1) [Belshaw & Williamson (1990) FEBS Lett. 269, 350-353], the three peptides all contain the C-terminal domain (residues 509-616) but, in addition, contain different proportions of the O-glycosylated region. The properties of these peptides have been compared to define the function of the O-linked oligosaccharides in this protein. The O-glycosylated region plays only a minor role in binding to hydrogen-bond ordered starch. The difference between the apparent free energy (delta G) for binding between the non-glycosylated C-terminal domain (-26.0 kJ/mol) and the C-terminal domain containing the fully O-glycosylated region (-25.0 kJ/mol) is only 1.0 kJ/mol. Binding to beta-cyclodextrin suggests that even this difference may reflect a small conformational change in the C-terminal domain rather than a direct effect of the O-linked sugars. The c.d. spectrum of the O-glycosylated region is deduced by comparison of the three peptides and is predominantly that of a random-coil structure. Two-dimensional n.m.r. spectra of glucoamylase and of the glycosylated peptide 499-616 show that the binding domain is more mobile than the catalytic domain and that its mobility is further increased on removal of the catalytic domain. The O-glycosylated region is more mobile still, and there is a marked increase in its mobility on removal of the catalytic domain. The O-glycosylated region in the intact protein can therefore be envisaged as a semi-rigid rod. The results show that a major function of O-glycosylation in glucoamylase 1 is to provide an extended peptide backbone and hence a fixed distance in linking the catalytic and binding domains. It does not in itself significantly increase the binding affinity for starch.
    [Abstract] [Full Text] [Related] [New Search]