These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preferred order random kinetic mechanism for homoserine dehydrogenase of Escherichia coli (Thr-sensitive) aspartokinase/homoserine dehydrogenase-I: equilibrium isotope exchange kinetics. Author: Wedler FC, Ley BW, Shames SL, Rembish SJ, Kushmaul DL. Journal: Biochim Biophys Acta; 1992 Mar 12; 1119(3):247-9. PubMed ID: 1547269. Abstract: Isotope exchange kinetics at chemical equilibrium have been used to investigate the kinetic mechanism of homoserine dehydrogenase (EC 1.1.1.3) of the (Thr-sensitive) aspartokinase/homoserine dehydrogenase-I multifunctional enzyme from E. coli. For the reaction (L-ASA + NADPH + H+ = L-Hse + NADP+), at pH 9.0, 37 degrees C, Keq = 100 (+/- 20). Under these conditions, the rate for exchange of [14C]-L-homoserine (Hse) in equilibrium L-aspartate-beta-semialdehyde (ASA) is nearly twice that for the [3H]-NADP+ in equilibrium NADPH exchange. This indicates that covalent interconversion between reactants and products bound in the active site cannot be rate-limiting. Upon variation of the concentrations of all four substrates in constant ratio at equilibrium (to minimize dead-end complex formation), the Hse in equilibrium ASA exchange increased smoothly toward a maximum. In contrast, the NADP+ in equilibrium NADPH exchange rate increased to a maximum value at partial saturation, then decreased to approximately half the maximum rate. These data are consistent with a preferred-order random kinetic mechanism in which the dominant pathway involves association of NADPH prior to L-ASA and dissociation of L-Hse prior to NADP+.[Abstract] [Full Text] [Related] [New Search]