These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for a molecular mechanism of teratogenicity of SB-236057, a 5-HT1B receptor inverse agonist that alters axial formation.
    Author: Augustine-Rauch KA, Zhang QJ, Leonard JL, Chadderton A, Welsh MJ, Rami HK, Thompson M, Gaster L, Wier PJ.
    Journal: Birth Defects Res A Clin Mol Teratol; 2004 Oct; 70(10):789-807. PubMed ID: 15472891.
    Abstract:
    BACKGROUND: SB-236057 is a potent skeletal teratogen in rodents and rabbits, producing axial and posterior somite malformations in cultured rat embryos. The compound shares some structural similarity to cyclopamine. METHODS: M13 phage display was used to identify amino acid motifs with binding affinity to SB-236057. A 10 microM SB-236057 solution was administered to cultured day 9 postcoitus rat embryos and real-time PCR was conducted at 6 hr posttreatment to evaluate early transcriptional response of axial development genes. Whole-mount in situ hybridization of selected transcripts was conducted on embryos at 48 hr post-compound administration. The rat-enhancer of split protein 1 (r-esp1) expression-functional characterization was done by transcriptional expression and morpholino antisense approaches. RESULTS: We identified several amino acid motifs that had high binding affinity to SB-236057-biotin conjugates, one with 100% sequence homology to a region of r-esp1, one of the Groucho homologs transcribed by the enhancer of split complex (En[spl]C). SB-236057 repressed expression of r-esp1 and members of the Notch-En[spl]C pathway. Goosecoid and HNF3-beta, both suspected to associate with Groucho proteins, were also responsive, although expression of another putative binding protein, engrailed-1 (en-1), and other en-1 pathway members was not affected. R-esp1 mRNA was localized along the axis and antisense inhibition produced similar somite malformations as SB-236057 did. At 48 hr post-SB-236057 or post-r-esp1 antisense administration, affected embryos demonstrated unchanged sonic hedgehog (shh) expression, however HNF3-beta expression was either absent, altered, or reduced. CONCLUSIONS: We present experimental evidence that the mechanism of SB-236057 teratogenicity includes transcriptional alterations to the Notch1-En[spl] pathway. In addition, alterations in HNF3-beta expression were similar to those induced by cyclopamine. The relationships between r-esp1 with Notch1 and shh signaling pathways and potential mechanisms of SB-236057 teratogenicity are also discussed.
    [Abstract] [Full Text] [Related] [New Search]