These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's disease. Author: Dervan AG, Meshul CK, Beales M, McBean GJ, Moore C, Totterdell S, Snyder AK, Meredith GE. Journal: Exp Neurol; 2004 Nov; 190(1):145-56. PubMed ID: 15473988. Abstract: Astrocytes play a major role in maintaining low levels of synaptically released glutamate, and in many neurodegenerative diseases, astrocytes become reactive and lose their ability to regulate glutamate levels, through a malfunction of the glial glutamate transporter-1. However, in Parkinson's disease, there are few data on these glial cells or their regulation of glutamate transport although glutamate cytotoxicity has been blamed for the morphological and functional decline of striatal neurons. In the present study, we use a chronic mouse model of Parkinson's disease to investigate astrocytes and their relationship to glutamate, its extracellular level, synaptic localization, and transport. C57/bl mice were treated chronically with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p). From 4 to 8 weeks after treatment, these mice show a significant loss of dopaminergic terminals in the striatum and a significant increase in the size and number of GFAP-immunopositive astrocytes. However, no change in extracellular glutamate, its synaptic localization, or transport kinetics was detected. Nevertheless, the density of transporters per astrocyte is significantly reduced in the MPTP/p-treated mice when compared to controls. These results support reactive gliosis as a means of striatal compensation for dopamine loss. The reduction in transporter complement on individual cells, however, suggests that astrocytic function may be compromised. Although reactive astrocytes are important for maintaining homeostasis, changes in their ability to regulate glutamate and its associated synaptic functions could be important for the progressive nature of the pathophysiology associated with Parkinson's disease.[Abstract] [Full Text] [Related] [New Search]