These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene.
    Author: Gao Y, Jheon A, Nourkeyhani H, Kobayashi H, Ganss B.
    Journal: Gene; 2004 Oct 27; 341():101-10. PubMed ID: 15474293.
    Abstract:
    We report the isolation of the human orthologue of the mouse Osterix (Osx/Sp7) gene, a C2H2 zinc finger transcription factor of the SP gene family and putative "master" regulator of bone cell differentiation. The human SP7 cDNA encodes a putative 431 amino acid protein that contains three consecutive C2H2 zinc finger repeats. The SP7 protein is highly conserved between mice and humans with an overall sequence identity of 95%. The expression of a SP7 mRNA transcript of approximately 3.2 kb is restricted to bone-derived cell lines in vitro but undetectable in any adult tissues including mandibular bone by Northern blot hybridization. The specific expression of SP7 mRNA in osteoblasts in vivo was further confirmed by in situ hybridization on human embryonic tissues. The highly restricted expression pattern and the divergence of the sequence outside of the zinc finger region distinguish SP7 as a unique member of the SP family. The SP7 gene consists of two exons, with exon 2 containing most of the protein coding sequence. The gene locus was mapped to chromosome 12q13.13 by fluorescent in situ hybridization (FISH). The identification and initial characterization of the SP7 gene will facilitate the study of the molecular regulation of osteoblast differentiation in humans.
    [Abstract] [Full Text] [Related] [New Search]