These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bone resorption activity of osteolytic metastatic lung and breast cancers.
    Author: Shih LY, Shih HN, Chen TH.
    Journal: J Orthop Res; 2004 Nov; 22(6):1161-7. PubMed ID: 15475192.
    Abstract:
    Production of bone resorption mediators and bone resorption activity were compared among osteolytic metastatic cancers, normal bone tissues, and soft tissue metastatic cancers to search for the possible factors leading to cancer-induced bone resorption. Twenty-five patients with untreated osteolytic metastatic breast or non-small cell lung cancers consisted of the study group. Normal bone tissues obtained from the same patient were used as internal controls; and tumor tissues from patients with soft tissue metastasis were used as external controls. Serum and urinary bone turnover markers were measured. Tissues harvested during surgery were subjected to tissue culture. The levels of prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) in the supernatant after 72 h of culture were measured. Bone resorption activity was measured by calcium release from cultured calvarias, and bone volume as well as osteoclast number in bone sections. Patients with osteolytic metastatic cancers showed significantly decreased serum osteocalcin, increased serum alkaline phosphatase, and urinary deoxypyridinoline levels. Osteolytic metastatic cancers produced significantly more PGE2 than both controls. Conditioned medium from osteolytic metastatic tumors showed significantly enhanced bone resorption activity, and indomethacin significantly reduced this activity. Levels of PGE2, and bone resorption activity increased in osteolytic tumor tissues than soft tissue metastatic tissues in the same patient indicated that the same tumor cells might respond differently to different microenvironments. Our observation showed that PGE2 was produced by osteolytic metastatic cancers and stimulated bone resorption in mice calvarias. PGE2 inhibitor may be applicable in reducing bone resorption by osteolytic metastatic cancers.
    [Abstract] [Full Text] [Related] [New Search]