These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin.
    Author: Petrosillo G, Ruggiero FM, Pistolese M, Paradies G.
    Journal: J Biol Chem; 2004 Dec 17; 279(51):53103-8. PubMed ID: 15475362.
    Abstract:
    Release of cytochrome c from mitochondria is considered a critical, early event in the induction of an apoptosis cascade that ultimately leads to programmed cell death. Mitochondrial Ca(2+) loading is a trigger for the release of cytochrome c, although the molecular mechanism underlying this effect is not fully clarified. This study tested the hypothesis that distinct Ca(2+) thresholds may induce cytochrome c release from rat liver mitochondria by membrane permeability transition (MPT)-dependent and independent mechanisms. The involvement of reactive oxygen species (ROS) and cardiolipin in the Ca(2+)-induced cytochrome c release was also investigated. Cytochrome c was quantitated by a new, very sensitive, and rapid reverse-phase high performance liquid chromatography method with a detection limit of 0.1 pmol/sample. We found that a low extramitochondrial Ca(2+) level (2 microM) promoted the release of approximately 13% of the total alamethicin releasable pool of cytochrome c from mitochondria. This release was not depending of MPT; it was mediated by Ca(2+)-induced ROS production and cardiolipin peroxidation and appears to involve the voltage-dependent anion channel. High extramitochondrial Ca(2+) level (20 microM) promoted approximately 45% of the total releasable pool of cytochrome c. This process was MPT-dependent and was also mediated by ROS and cardiolipin. It is suggested that distinct Ca(2+) levels may determine the mode and the amount of cytochrome c release from rat liver mitochondria. The data may help to clarify the molecular mechanism underlying the Ca(2+)-induced release of cytochrome c from rat liver mitochondria and the role played by ROS and cardiolipin in this process.
    [Abstract] [Full Text] [Related] [New Search]