These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nerve regeneration-induced recovery of quinine avoidance after complete gustatory deafferentation of the tongue. Author: Geran LC, Garcea M, Spector AC. Journal: Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1235-43. PubMed ID: 15475506. Abstract: The concentration-dependent decrease in quinine licking by rats is substantially attenuated by combined bilateral transection of the chorda tympani (CT) and glossopharyngeal (GL) nerves, but transection of either nerve alone produces marginal impairments at most. Here we tested whether regeneration of one or both of these nerves after combined transection would result in recovery of taste avoidance. Water-restricted rats were presented with a series of brief-access (5 s) taste trials (water and 0.003-3.0 mM quinine-HCl) in a 5-day test block of 40-min sessions both before nerve transection and starting 75-77 days after transection. Licking avoidance returned to presurgical levels when both nerves were allowed to regenerate. When only the GL was allowed to regenerate, performance did not differ from that of sham-transected animals. This suggests that even after considerable gustatory deafferentation, regeneration has the capacity to restore normal taste-guided behavior. Surprisingly, when only the CT was allowed to regenerate, avoidance behavior was severely impaired and was not different from that of rats in which regeneration of both nerves was prevented. Taking into account prior findings, it appears that the absence of the GL in the presence of an intact CT is fundamentally different from the absence of the GL in the presence of a regenerated CT with respect to some taste functions. This represents the first reported instance to our knowledge in which the capacity of a regenerated nerve to maintain taste-guided behavior was distinctly different from that of an intact nerve in a rodent model.[Abstract] [Full Text] [Related] [New Search]