These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Corticospinal physiology in patients with Prader-Willi syndrome: a transcranial magnetic stimulation study.
    Author: Civardi C, Vicentini R, Grugni G, Cantello R.
    Journal: Arch Neurol; 2004 Oct; 61(10):1585-9. PubMed ID: 15477513.
    Abstract:
    BACKGROUND: Prader-Willi syndrome (PWS) is a genetic developmental disorder, mostly caused by a deletion on the paternal chromosome 15 or by a maternal uniparental disomy 15. Some PWS clinical and neurochemical features suggest an involvement of the corticospinal motor structures. OBJECTIVE: To explore the corticospinal physiology of PWS by transcranial magnetic stimulation. SETTING: A community-based hospital. METHODS: We studied motor evoked potentials in the first dorsal interosseous muscle of 21 young-adult patients with PWS. Thirteen patients had a deletion at chromosome 15; 8 had a uniparental disomy. We measured the following variables: relaxed motor threshold, central motor conduction time, duration of the central silent period, and short-interval intracortical inhibition and facilitation. We also recorded F waves in the first dorsal interosseous muscle. We had 11 normal controls. RESULTS: In the whole PWS group, motor threshold was higher as compared with controls (P<.05). The central motor conduction time, central silent period, and F waves were normal. Intracortical facilitation was reduced significantly (P<.001). Patients with PWS and a deletion had a weaker intracortical inhibition as compared with patients with PWS and a uniparental disomy (P<.05). CONCLUSIONS: Transcranial magnetic stimulation changes in patients with PWS suggested a hypo-excitability of the motor cortical areas. Defective neurogenesis of the cortical tissue and multiple transmitter alterations are the putative causes. Impaired intracortical inhibition might represent an electrical marker for a deletion defect.
    [Abstract] [Full Text] [Related] [New Search]