These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions. Author: Vedsted P, Blangsted AK, Søgaard K, Orizio C, Sjøgaard G. Journal: Eur J Appl Physiol; 2006 Jan; 96(2):165-77. PubMed ID: 15480741. Abstract: Dynamic muscle contractions have been shown to cause greater energy turnover and fatigue than static contractions performed at a corresponding force level. Therefore, we hypothesized that: (1) electro- (EMG) and mechanomyography (MMG), intramuscular pressure (IMP), and reduction in muscle oxygen tension (rTO(2)) would be larger during dynamic (DYN) than intermittent static (IST) low force contractions; and that (2) oxygen tension would remain lower in the resting periods subsequent to DYN as compared to those following IST. Eight subjects performed elbow flexions with identical time-tension products: (1) DYN as a 20 degrees elbow movement of 2 s concentric and 2 s eccentric followed by a 4 s rest; and (2) IST with a 4 s contraction followed by a 4 s rest. Each session was performed for 1 min at 10 and 20% of the maximal voluntary contraction (MVC). The force, bipolar surface EMG, MMG, IMP, rTO(2) were measured simultaneously from the biceps brachii, and the data presented as the mean values together with the standard error of the means. Comparison of the corresponding time periods showed the EMG(rms) and MMG(rms) values to be larger during DYN than IST (concentric phase: DYN vs IST were 14.2 vs 9.4, and 22.0 vs 15.9%(max)-EMG(rms); eccentric phase: in DYN, the MMG was approximately 1.5 and approximately 2.0-fold IST at 10 and 20%MVC, respectively). In contrast, the IMP of the concentric phase in DYN was lower than in IST (2.3 vs 29.5 and 10.9 vs 42.0 mmHg at 10 and 20%MVC, respectively), and a similar picture was seen for the eccentric phase. However, no differences were seen in rTO(2) in either the contraction or the rest periods. In a prolonged rest period (8 s) after the sessions, DYN but not IST showed rTO(2) above baseline level. In conclusion, rTO(2) in DYN and IST were similar in spite of major differences in the MMG and EMG responses of the muscle during contraction periods. This may relate to the surprisingly lower IMP in DYN than IST.[Abstract] [Full Text] [Related] [New Search]