These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: UVB radiation-mediated expression of inducible nitric oxide synthase activity and the augmenting role of co-induced TNF-alpha in human skin endothelial cells. Author: Suschek CV, Mahotka C, Schnorr O, Kolb-Bachofen V. Journal: J Invest Dermatol; 2004 Nov; 123(5):950-7. PubMed ID: 15482484. Abstract: Nitric oxide (NO) plays a pivotal role in ultraviolet radiation-induced inflammation in human skin. We had earlier reported on the inducible nitric oxide synthase (iNOS) inducing activity of UVA radiation. We now demonstrate that UVB-exposure induces expression of the iNOS in vessel endothelia of normal human skin and in cultured human dermal endothelial cells (HUDEC), although by a molecular mechanism different from UVA-mediated induction. With HUDEC, UVB induces iNOS expression and leads to significant enzyme activities, although at app. 5-fold lower levels than can be achieved with proinflammatory cytokines. In contrast to our earlier observation with UVA, cytokine-challenge combined with simultaneous UVB-exposure had no additive effects on iNOS expression nor activity. Interestingly, a time-delay between UVB-irradiation and cytokine-challenge enhances endothelial iNOS enzyme activity 2.5-fold over cytokines activation only. This time-dependent effect strongly correlates with UVB-induced endothelial TNF-alpha expression. In HUDEC addition of TNF-alpha results in enhanced expression of the inducible arginine transporter system CAT-2 essential for substrate supply and thus iNOS activity. In summary, UVB induces iNOS mRNA and enzyme activity in HUDEC. Moreover, UVB augments CAT-2 expression through a TNF-alpha- dependent mechanism which essentially contributes to increased iNOS activity.[Abstract] [Full Text] [Related] [New Search]