These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Entry of newly synthesized gangliosides into myelin. Author: Farrer RG, Benjamins JA. Journal: J Neurochem; 1992 Apr; 58(4):1477-84. PubMed ID: 1548481. Abstract: Ganglioside synthesis and transport to myelin was studied in brainstem slices prepared from 19-21-day-old rats. The slices were incubated for up to 2 h in the presence of [3H]glucosamine to label primarily the hexosamine portion of complex gangliosides. The amount of radioactivity incorporated into gangliosides during slice incubations was only 10-15% of the amount of the label incorporated during in vivo labeling of brainstem gangliosides using equivalent amounts of [3H]glucosamine. Among individual gangliosides this inhibition was greater for the more complex gangliosides. When labeled gangliosides were isolated from homogenate and myelin fractions prepared from brain slices, the complex total gangliosides of both fractions showed a lag in labeling kinetics but with a lower specific radioactivity for the myelin fraction, reflecting the larger pool size and slower turnover rate exhibited by myelin components. Chase experiments showed that more complex gangliosides in homogenate exhibited almost no effect of chase after 30 min. Addition of the Golgi-disrupting agent monensin to slice incubations inhibited the labeling of all gangliosides except GM3, GM2, and GD3, and transport to myelin of all complex gangliosides except GM2. These results show that a monensin-sensitive mode of transport is responsible for the translocation of most newly synthesized gangliosides into myelin.[Abstract] [Full Text] [Related] [New Search]