These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Considerations about the enantioselective transformation of polycyclic musks in wastewater, treated wastewater and sewage sludge and analysis of their fate in a sequencing batch reactor plant. Author: Berset JD, Kupper T, Etter R, Tarradellas J. Journal: Chemosphere; 2004 Nov; 57(8):987-96. PubMed ID: 15488589. Abstract: The present work consists of two distinct parts: in the first part enantioselective GC was used to separate the different enantiomeric/diastereomeric polycyclic musks, PCMs (HHCB, AHTN, AHDI, ATII and DPMI) including the main transformation product of HHCB, HHCB-lactone, in wastewater and sewage sludge. After optimization all PCMs were resolved on a cyclodextrin containing Rt-BDEXcst capillary GC column. Enantiomeric ratios of PCMs in a technical mixture were determined and compared to those obtained from enantioselective separation of wastewater and sewage sludge samples. In general, enantiomeric ratios were similar for most materials in influent, effluent and stabilized sewage sludge. However, the ratios for HHCB, AHDI and particularly ATII suggest some stereospecific removal of these compounds. In the second part, a field study was conducted on a wastewater treatment plant comprising a sequencing batch reactor. Concentrations of HHCB, AHTN, ADBI, AHDI, ATII, DPMI and HHCB-lactone were determined by non-enantioselective GC in daily samples of influent, effluent and activated sludge during one week. Mean concentrations in influent were 6900 and 1520 ng/l for HHCB and AHTN, respectively. The other PCMs exhibited contents 200 ng/l. Mean percent removal was between 61% (AHDI) and 87% (HHCB) resulting in mean effluent concentrations below 860 ng/l. HHCB-lactone concentration increased during wastewater treatment with a mean in the influent of 430 ng/l and in the effluent of 900 ng/l, respectively, indicating a degradation of HHCB.[Abstract] [Full Text] [Related] [New Search]