These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Author: Mitrakul K, Loo CY, Hughes CV, Ganeshkumar N. Journal: Oral Microbiol Immunol; 2004 Dec; 19(6):395-402. PubMed ID: 15491466. Abstract: Streptococcus gordonii is a pioneer oral bacterium that is associated with the initiation of dental plaque development. Located downstream of the S. gordonii adc operon, which is involved in competence and biofilm formation, were three open reading frames, designated copY, copA and copZ. These open reading frames were homologous to the copYAZ genes in Streptococcus mutans that are involved in copper homeostasis and biofilm detachment. This study examined whether copYAZ genes play any role in the biofilm formation and detachment of S. gordonii. The copY gene encodes a 143-amino acid protein homologous to the negative transcriptional regulator of a copper-transport operon, copA encodes a 748-amino acid copper-transporting P-type ATPase, and copZ encodes a 69-amino acid putative metallochaperone protein in S. mutans. Each open reading frame in the copYAZ operon in S. gordonii was inactivated by insertional mutation and the growth, biofilm formation and detachment of each mutant were examined. S. gordonii copY::specR, copA::specR, and copZ::specR mutants were able to form biofilms on both polystyrene and glass surfaces. However, inactivation of copZ and to a lesser extent copY resulted in phenotypes that were defective in biofilm detachment, which is consistent with previous observations in S. mutans and suggests that the trace element copper might influence biofilm detachment of bacterial biofilms.[Abstract] [Full Text] [Related] [New Search]