These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation.
    Author: Hanash AM, Levy RB.
    Journal: Blood; 2005 Feb 15; 105(4):1828-36. PubMed ID: 15494429.
    Abstract:
    Allogeneic bone marrow transplantation (BMT) is a potentially curative treatment for both inherited and acquired diseases of the hematopoietic compartment; however, its wider use is limited by the frequent and severe outcome of graft-versus-host disease (GVHD). Unfortunately, efforts to reduce GVHD by removing donor T cells have resulted in poor engraftment and elevated disease recurrence. Alternative cell populations capable of supporting allogeneic hematopoietic stem/progenitor cell engraftment without inducing GVHD could increase numbers of potential recipients while broadening the pool of acceptable donors. Although unfractionated CD4(+) T cells have not been shown to be an efficient facilitating population, CD4(+)CD25(+) regulatory cells (T-reg's) were examined for their capacity to support allogeneic hematopoietic engraftment. In a murine fully major histocompatibility complex (MHC)-mismatched BMT model, cotransplantation of donor B6 T-reg's into sublethally conditioned BALB/c recipients supported significantly greater lineage-committed and multipotential donor progenitors in recipient spleens 1 week after transplantation and significantly increased long-term multilineage donor chimerism. Donor engraftment occurred without GVHD-related weight loss or lethality and was associated with tolerance to donor and host antigens by in vitro and in vivo analyses. Donor CD4(+)CD25(+) T cells may therefore represent a potential alternative to unfractionated T cells for promotion of allogeneic engraftment in clinical hematopoietic cell transplantation.
    [Abstract] [Full Text] [Related] [New Search]