These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. Author: Rahman SM, Dobrzyn A, Lee SH, Dobrzyn P, Miyazaki M, Ntambi JM. Journal: Am J Physiol Endocrinol Metab; 2005 Feb; 288(2):E381-7. PubMed ID: 15494611. Abstract: Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of oleate (C18:1) and palmitoleate (C16:1), which are the main monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Previously, we showed that SCD1 deficiency elevates insulin-signaling components and downregulates protein-tyrosine phosphatase-1B (PTP-1B) in muscle, a major insulin-sensitive tissue. Here we found that, in brown adipose tissue (BAT), another insulin-sensitive tissue, the basal tyrosine phosphorylations of insulin receptor (IR) and IR substrates (IRS-1 and IRS-2) were upregulated in SCD1(-/-) mice compared with wild-type mice. The association of IRS-1 and IRS-2 with the alpha-p85 subunit of phosphatidylinositol 3-kinase as well as Akt-Ser(473) and Akt-Thr(308) phosphorylation is also elevated in the SCD1(-/-) mice. The mRNA expression, protein levels, and activity of PTP-1B implicated in the attenuation of the insulin signal are reduced in the SCD1(-/-) mice. The content of GLUT4 in the plasma membrane increased 2.5-fold, and this was accompanied by a 6-fold increase in glucose uptake in BAT of SCD1(-/-) mice. The increased glucose uptake was associated with higher glycogen synthase activity and glycogen accumulation. In the presence of insulin, [U-(14)C]glucose incorporation into glycogen was increased in BAT of SCD1(-/-) mice. Taken together, these studies illustrate increased insulin signaling and increased glycogen metabolism in BAT of SCD1(-/-) mice.[Abstract] [Full Text] [Related] [New Search]