These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion in mice. Author: Dong H, Sellers ZM, Smith A, Chow JY, Barrett KE. Journal: Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G457-65. PubMed ID: 15499079. Abstract: Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.[Abstract] [Full Text] [Related] [New Search]