These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-temperature electron transfer in photosystem II: a tyrosyl radical and semiquinone charge pair.
    Author: Zhang C, Boussac A, Rutherford AW.
    Journal: Biochemistry; 2004 Nov 02; 43(43):13787-95. PubMed ID: 15504041.
    Abstract:
    The states induced by illumination at 7 K in the oxygen-evolving enzyme (PSII) from Thermosynechococcus elongatus were studied by EPR. In the S(0) and S(1) redox states, two g approximately 2 EPR signals, a split signal and a g = 2.03 signal, respectively, were generated by illumination with visible light. These signals were comparable to those already reported in plant PSII in terms of their g value, shape, and stability at low temperatures. We report that the formation and decay of these signals correlate with EPR signals from the semiquinone of the first quinone electron acceptor, Q(A)(-). The light-induced EPR signals from oxidized side-path electron donors (Cyt b(559), Car, and Chl(Z)) were also measured, and from these and the signals from Q(A)(-), estimates were made of the proportion of centers involved in the formation of the g approximately 2 signals (approximately 50% in S(0) and 40% in S(1)). Comparisons with the signals generated in plant PSII indicated approximately similar yields for the S(0) split signal. A single laser flash at 7 K induced more than 75% of the maximum split and g = 2.03 EPR signal observed by continuous illumination, with no detectable oxidation of side-path donors. The matching electron acceptor side reactions, the high quantum yield, and the relatively large proportion of centers involved support earlier suggestions that the state being monitored is Tyr(Z)(*)Q(A)(-), with the g approximately 2 EPR signals arising from Tyr(Z)(*) interacting magnetically with the Mn complex. The current picture of the photochemical reactions occurring in PSII at low temperatures is reassessed.
    [Abstract] [Full Text] [Related] [New Search]