These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Leukocyte-derived myeloperoxidase amplifies high-glucose--induced endothelial dysfunction through interaction with high-glucose--stimulated, vascular non--leukocyte-derived reactive oxygen species.
    Author: Zhang C, Yang J, Jennings LK.
    Journal: Diabetes; 2004 Nov; 53(11):2950-9. PubMed ID: 15504976.
    Abstract:
    Vascular non-leukocyte-derived reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H(2)O(2)), have emerged as important molecules in diabetic endothelial dysfunction. In addition, leukocyte-derived myeloperoxidase (MPO) has been implicated in vascular injury, and its injury response is H(2)O(2) dependent. It is well known that MPO can use leukocyte-derived H(2)O(2); however, it is unknown whether the vascular-bound MPO can use high-glucose-stimulated, vascular non-leukocyte-derived H(2)O(2) to induce diabetic endothelial dysfunction. In the present study, we demonstrated that MPO activity is increased in vessels from diabetic rats. In high-glucose-incubated rat aortas and in carotid arteries from rats with acute hyperglycemia, vascular-bound MPO utilized high-glucose-stimulated H(2)O(2) to amplify the ROS-induced impairment of endothelium-dependent relaxation via reduction of nitric oxide bioavailability. Hypochlorous acid (HOCL)-modified LDL, a specific biomarker for the MPO/HOCL/chlorinating species pathway, was detected in LDL- and MPO-bound vessels with high-glucose-stimulated H(2)O(2). The results suggest that vascular-bound MPO could use high-glucose-stimulated H(2)O(2) to amplify high-glucose-induced injury in the vascular wall. MPO/H(2)O(2)/HOCL/chlorinating species may represent an important pathway in diabetes complications and a new mechanism in phagocyte- and systemic infection-induced exacerbation of diabetic vascular diseases.
    [Abstract] [Full Text] [Related] [New Search]