These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales. Author: Shimada S, Takahashi K, Sato Y, Sakuta M. Journal: Plant Cell Physiol; 2004 Sep; 45(9):1290-8. PubMed ID: 15509852. Abstract: Two types of red pigment, anthocyanins and betacyanins, never occur together in the same plant. Although anthocyanins are widely distributed in higher plants as flower and fruit pigments, betacyanins have replaced anthocyanins in the Caryophyllales. We isolated cDNAs encoding dihydroflavonol 4-reductase (DFR), which is the first enzyme committed to anthocyanin biosynthesis in the flavonoid pathway, from Spinacia oleracea and Phytolacca americana, plants that belong to the Caryophyllales. The deduced amino acid sequence of Spinacia DFR and Phytolacca DFR revealed a high degree of homology with DFRs of anthocyanin-producing plants. The DFR of carnation, an exception in the Caryophyllales that synthesizes anthocyanin, showed the highest level of identity. In the phylogenetic tree, Spinacia DFR and Phytolacca DFR clustered with the DFRs of anthocyanin-synthesizing dicots. Recombinant Spinacia and Phytolacca DFRs expressed in Escherichia coli convert dihydroflavonol to leucoanthocyanidin. The expression and function of DFR in spinach and pokeweed are discussed in relation to the molecular evolution of red pigment biosynthesis in higher plants.[Abstract] [Full Text] [Related] [New Search]