These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): a comparison with CCl4. Author: Faradzhev NS, Perry CC, Kusmierek DO, Fairbrother DH, Madey TE. Journal: J Chem Phys; 2004 Nov 01; 121(17):8547-61. PubMed ID: 15511180. Abstract: The kinetics of decomposition and subsequent chemistry of adsorbed CF(2)Cl(2), activated by low-energy electron irradiation, have been examined and compared with CCl(4). These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF(2)Cl(2) and CCl(4) dissociation increase in an H(2)O (D(2)O) environment (2-3x), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H(2)O, using 180 eV incident electrons, are measured (using TPD) to be 1.0+/-0.2 x 10(-15) cm(2) for CF(2)Cl(2) and 2.5+/-0.2 x 10(-15) cm(2) for CCl(4). RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl(-) and F(-) anions in the halocarbon/water films and production of H(3)O(+), CO(2), and intermediate compounds COF(2) (for CF(2)Cl(2)) and COCl(2), C(2)Cl(4) (for CCl(4)) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation.[Abstract] [Full Text] [Related] [New Search]