These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Congruency effects on load bearing in diarthrodial joints. Author: Adeeb SM, Sayed Ahmed EY, Matyas J, Hart DA, Frank CB, Shrive NG. Journal: Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758. Abstract: Modelling load bearing in diarthrodial joints is challenging, due to the complexity of the materials, the boundary and interface conditions and the geometry. The articulating surfaces are covered with cartilage layers that are filled with a fluid that plays a major role in load bearing [Mow, V.C., Holmes, M.H., Lai, W.M. (1984) "Survey article: fluid transport and mechanical properties of articular cartilage: a review", Journal of Biomechanics 17(5), 377-394]. Researchers have tended to approximate joint geometry using axisymmetry [Donzelli, P.S., Spilker, R.L., Ateshian, G.A., Mow, V.C. (1999) "Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure", Journal of Biomechanics 32, 1037-1047], often with a rounded upper articulating surface, creating a form of Hertz problem [Donzelli, P.S., Spilker, R.L., Ateshian, G.A., Mow, V.C. (1999) "Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure", Journal of Biomechanics 32, 1037-1047]. However, diarthrodial joints (shoulder, hip and knee) are equipped with peripheral structures (glenoid labrum, acetabular labrum and meniscus, respectively) that tend to deepen the joint contact and thus cause initial contact to be established at the periphery of the joint rather than "centrally". The surface geometries are purposefully incongruent, and the incongruency has a significant effect on the stresses, pressures and pressure gradients inside the tissue. The models show the importance of the peripheral structures and the incongruency from a load-bearing perspective. Joint shapes must provide a compromise between demands for load-bearing, lubrication and the supply of nutrients to the chondrocytes of the cartilage and cells of the peripheral structures. Retention and repair of the functionality of these peripheral structures should be a prime consideration in any surgical treatment of an injured joint.[Abstract] [Full Text] [Related] [New Search]