These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Urocortinergic neurons respond in a differentiated manner to various acute stressors in the Edinger-Westphal nucleus in the rat.
    Author: Gaszner B, Csernus V, Kozicz T.
    Journal: J Comp Neurol; 2004 Dec 06; 480(2):170-9. PubMed ID: 15514930.
    Abstract:
    Corticotropin-releasing factor (CRF) was implicated as being a major contributor to the neurochemically mediated central regulation of stress response; however, an increasing body of evidence suggests that, besides CRF, other members of this neuropeptide family, such as urocortin (Ucn), may also play a role in modifying the efferent components of immune, endocrine, and behavioral responses to stress. Ucn's distribution in the rat brain has been demonstrated, with the most abundant Ucn-immunoreactive perikarya present in the Edinger-Westphal nucleus (E-WN). Acute pain and immobilization stresses recruit E-WN neurons, however, the activation pattern of E-WN Ucn neurons in response to various acute systemic and neurogenic challenges has not been compared in a single study. We therefore combined quantitative Fos imaging as a marker for neuronal activation with urocortin immunohistochemistry to visualize neurons induced by intravenous lipopolysaccharide (LPS; 100 microg/kg), ether inhalation, restraint, hyperosmotic (1.5 M NaCl i.p.), and hypotensive hemorrhage challenges. Neurons in the E-WN responded with the strongest Fos induction to LPS, but ether and restraint stress also resulted in massive Fos immunoreactivity 2 hours after stress. Unexpectedly, hyperosmotic and hypotensive hemorrhage stresses did not induce urocortinergic perikarya in this brain area 2 hours poststress. This challenge-specific recruitment of E-WN neurons was independent of stress-induced adrenal response. The biological significance and the stress-specific activation of E-WN urocortinergic neurons will be discussed.
    [Abstract] [Full Text] [Related] [New Search]