These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrophobic core around tyrosine for human endothelin-1 investigated by photochemically induced dynamic nuclear polarization nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Author: Takashima H, Tamaoki H, Teno N, Nishi Y, Uchiyama S, Fukui K, Kobayashi Y. Journal: Biochemistry; 2004 Nov 09; 43(44):13932-6. PubMed ID: 15518541. Abstract: Human endothelin-1 (ET-1) is a potent cardiovascular bioactive peptide. Its activity is based on the C-terminal residues, e.g., Trp 21 in particular. Recently, we reported an NMR solution structure of ET-1, which has a C-terminal hydrophobic core around Tyr 13. This C-terminal conformation does not agree with a previously reported X-ray crystal structure. To clarify the discrepancy, we performed photo-CIDNP NMR in combination with MALDI-TOF MS. The photo-CIDNP results revealed that the Tyr 13 aromatic ring is concealed in a hydrophobic interaction. MALDI-TOF MS experiments showed this is an intramolecular interaction in monomeric form, which is also supported by sedimentation analysis and two-dimensional NMR cross-peak line shapes. Thus, we confirmed the intramolecular hydrophobic core around Tyr 13 in aqueous solution, which agrees with the solution structure. The C-terminal conformational discrepancy between the solution and crystal was caused by the intermolecular hydrogen bond between Tyr 13 of one molecule and Asp 8 of the other in a dimer-like formation of crystalline ET-1. On the other hand, we indicated that endothelin-3, another isoform of the endothelin, has an apparent self-association equilibrium under the same condition in which three tyrosines participate.[Abstract] [Full Text] [Related] [New Search]