These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated.
    Author: Ramautar JR, Kok A, Ridderinkhof KR.
    Journal: Brain Cogn; 2004 Nov; 56(2):234-52. PubMed ID: 15518938.
    Abstract:
    The aim of this study was to examine the effects of frequency of occurrence of stop signals in the stop-signal paradigm. Presenting stop signals less frequently resulted in faster reaction times to the go stimulus and a lower probability of inhibition. Also, go stimuli elicited larger and somewhat earlier P3 responses when stop signals occurred less frequently. Since the amplitude effect was more pronounced on trials when go signals were followed by fast than slow reactions, it probably reflected a stronger set to produce fast responses. N2 and P3 components to stop signals were observed to be larger and of longer latency when stop signals occurred less frequently. The amplitude enhancement of these N2 and P3 components were more pronounced for unsuccessful than for successful stop-signal trials. Moreover, the successfully inhibited stop trials elicited a frontocentral P3 whereas unsuccessfully inhibited stop trials elicited a more posterior P3 that resembled the classical P3b. P3 amplitude in the unsuccessfully inhibited condition also differed between waveforms synchronized with the stop signal and waveforms synchronized with response onset whereas N2 amplitude did not. Taken together these findings suggest that N2 reflected a greater significance of failed inhibitions after low probability stop signals while P3 reflected continued processing of the erroneous response after response execution.
    [Abstract] [Full Text] [Related] [New Search]