These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural requirements for 2,4- and 3,6-disubstituted pyran biomimetics of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine compounds to interact with monoamine transporters. Author: Zhang S, Zhen J, Reith ME, Dutta AK. Journal: Bioorg Med Chem; 2004 Dec 01; 12(23):6301-15. PubMed ID: 15519172. Abstract: In our effort to delineate novel pharmacophoric configuration of bioisosteric pyran versions of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine derivatives in interacting with the monoamine transporter, further structure-activity relationship study was carried out. Both cis and trans 2,4- and 3,6-disubstituted derivatives were synthesized to determine the positional importance of N-substitution on affinity for monoamine transporters, that is the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain. For that purpose, the potency of compounds was determined in competing for the binding of [(3)H]WIN 35,428, [(3)H]citalopram, and [(3)H]nisoxetine, respectively. Selected compounds were also evaluated for their activity in inhibiting the uptake of [(3)H]DA by DAT. Our binding results demonstrated potency in 3,6-disubstituted derivatives while 2,4-disubstituted derivatives failed to exhibit any appreciable binding affinity. Further structural exploration of the exocyclic N-atom in 3,6-disubstituted derivatives produced compounds potent at both DAT and NET. Compounds 16h and 16o with hydroxyl and amino groups in the phenyl moiety of the benzyl group produced the highest activity for the NET. In this regard, compound 16e with a methoxy substituent produced weak affinity at NET, which upon conversion into a hydroxyl functionality as in 16h produced potent affinity for the NET. Various indole derivatives displayed different interactions; the 5-substituted indole derivative 16n exerted potent affinity for NET, confirming the bioisosteric equivalence between this indole moiety and the phenyl-4-hydroxy group in 16h.[Abstract] [Full Text] [Related] [New Search]