These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Author: Lee TM, Lai HY, Chen ZS. Journal: Chemosphere; 2004 Dec; 57(10):1459-71. PubMed ID: 15519390. Abstract: The availability of metal in contaminated soil can be reduced by the addition of soil amendments. The objectives of this study are to study the effects of applying different soil amendments on the concentration of Cd and Pb in soil solution, DTPA or EDTA extractable Cd and Pb, and the uptake of Cd and Pb by wheat (Triticum vulgare) when growing in long-term Cd and Pb-contaminated soils, more than 20 years. The soil amendments, including check, compost, zinc oxide, calcium carbonate, calcium carbonate mixed with zinc oxide, and calcium carbonate mixed with compost, were conducted in a four replicates pot cultural study. The amended soils were incubated for six months under 60% of water holding capacity. Following incubation, wheat was grown for four months in greenhouse. Analyses of Cd concentration demonstrated a significant decrease in soil solution concentration and DTPA or EDTA extractable in soils amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). These amendments can significantly reduce the Cd concentration in the grain, leaf and stem, or reduce the total Cd uptake in all parts of wheat species grown in highly contaminated soil amended with calcium carbonate or calcium carbonate mixed with ZnO (or compost) (p<0.01). The concentration of Cd in soil solution and extracted with DTPA or EDTA can predict the Cd concentration in wheat, especially for soil solution.[Abstract] [Full Text] [Related] [New Search]