These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of c-Myc in growth inhibition of Hep 3B human hepatoma cells by a vitamin K analog. Author: Ge L, Wang Z, Wang M, Kar S, Carr BI. Journal: J Hepatol; 2004 Nov; 41(5):823-9. PubMed ID: 15519656. Abstract: BACKGROUND/AIMS: A synthetic vitamin K analog, compound 5 (Cpd 5), is a potent inhibitor of cell growth. The aim was to investigate whether c-Myc was involved in Cpd 5-induced cell growth inhibition. METHODS: Human hepotoma cells (Hep 3B) were cultured and treated with Cpd 5, and c-Myc protein expression and phosphorylation were investigated using Western blot analysis. RESULTS: Cpd 5 was found to inhibit c-Myc protein expression and induce c-Myc phosphorylation in Hep 3B cells. The phosphorylation of c-Myc was induced by both Cpd 5-mediated persistent extracellular signal-regulated kinase (ERK) phosphorylation and Cpd 5 increased glycogen synthase kinase-3 (GSK-3) activity. When using GSK-3 inhibitor, SB216763, c-Myc phosphorylation was significantly decreased and c-Myc levels were restored in Cpd 5 treated cells, suggesting that Cpd 5-mediated increase of GSK-3 activity enhanced c-Myc degradation and resulted in reduction of c-Myc levels. The lower c-Myc levels were found to cause altered expression of two c-Myc target genes, growth arrest gene gadd45 and ornithine decarboxylase (ODC). CONCLUSIONS: The results suggest that Cpd 5-mediated c-Myc phosphorylation resulted in enhanced c-Myc protein degradation and reduced c-Myc protein levels, which may contribute to cell growth inhibition by Cpd 5.[Abstract] [Full Text] [Related] [New Search]