These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Age-dependent effects of serotonin-1A receptor gene deletion in spatial learning abilities in mice. Author: Wolff M, Costet P, Gross C, Hen R, Segu L, Buhot MC. Journal: Brain Res Mol Brain Res; 2004 Nov 04; 130(1-2):39-48. PubMed ID: 15519675. Abstract: The serotonin (5-hydroxytryptamine, 5-HT) receptor 1A is involved in many physiological functions, including the regulation of learning and memory by acting either as an autoreceptor located on 5-HT neurons (raphe nuclei) or as a heteroreceptor on non-5-HT neurons, mainly in the hippocampal formation. To investigate whether the effects of 5-HT via 5-HT1A receptors on learning are age-sensitive, we evaluated the performance of young-adult (3 months old) and aged (22 months old) 5-HT1A knockout (KO) mice and their homologous wild types (WT) in the hippocampal-dependent spatial reference memory version of the Morris water maze. We demonstrated that young-adult 5-HT1AKO mice exhibit an impairment in learning and retention of the spatial task, as compared to WT mice, without showing any sign of change in their sensori-motor and locomotor abilities or motivation. This genotype effect does not persist during aging. In fact, aged 5-HT1AKO mice seem to be slightly facilitated during the early stages of learning. These results are consistent with a possible prevalence of 5-HT1A raphe functions in learning and memory abilities of young-adult animals, since the effects of the mutation on mice performance (impairment) are opposite to those found after intra-raphe injection of 5-HT1A agonists (facilitation), and with data showing increased activity of 5-HT neurons in 5-HT1AKO mice. The reduced effect of the mutation in aged animals possibly reflects the lower efficacy of autoreceptors due to aging and/or a prevalence of hippocampal heteroreceptors.[Abstract] [Full Text] [Related] [New Search]