These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mathematical modelling of an ischemic stroke: an integrative approach. Author: Dronne MA, Boissel JP, Grenier E, Gilquin H, Cucherat M, Hommel M, Barbier E, Bricca G. Journal: Acta Biotheor; 2004; 52(4):255-72. PubMed ID: 15520533. Abstract: Understanding the mechanisms and the time and spatial evolution of penumbra following an ischemic stroke is crucially important for developing therapeutics aimed at preventing this area from evolving towards infarction. To help in integrating the available data, we decided to build a formal model. We first collected and categorised the major available evidence from animal models and human observations and summarized this knowledge in a flow-chart with the potential key components of an evolving stroke. Components were grouped in ten sub-models that could be modelled and tested independently: the sub-models of tissue reactions, ionic movements, oedema development, glutamate excitotoxicity, spreading depression, NO synthesis, inflammation, necrosis, apoptosis, and reperfusion. Then, we figured out markers, identified mediators and chose the level of complexity to model these sub-models. We first applied this integrative approach to build a model based on cytotoxic oedema development following a stroke. Although this model includes only three sub-models and would need to integrate more mechanisms in each of these sub-models, the characteristics and the time and spatial evolution of penumbra obtained by simulation are qualitatively and, to some extent, quantitatively consistent with those observed using medical imaging after a permanent occlusion or after an occlusion followed by a reperfusion.[Abstract] [Full Text] [Related] [New Search]