These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Perceptual functions in prosopagnosia. Author: Barton JJ, Cherkasova MV, Press DZ, Intriligator JM, O'Connor M. Journal: Perception; 2004; 33(8):939-56. PubMed ID: 15521693. Abstract: Some patients with prosopagnosia may have an apperceptive basis to their recognition defect. Perceptual abnormalities have been reported in single cases or small series, but the causal link of such deficits to prosopagnosia is unclear. Our goal was to identify candidate perceptual processes that might contribute to prosopagnosia, by subjecting several prosopagnosic patients to a battery of functions that may be necessary for accurate facial perception. We tested seven prosopagnosic patients. Three had unilateral right occipitotemporal lesions, two had bilateral posterior occipitotemporal lesions, and one had right anterior-to-occipital temporal damage along with a small left temporal lesion. These lesions all included the fusiform face area, in contrast to one patient with bilateral anterior temporal lesions. Most patients had impaired performance on face-matching tests and difficulty with subcategory judgments for non-face objects. The most consistent deficits in patients with lesions involving the fusiform face area were impaired perception of spatial relations in dot patterns and reduced contrast sensitivity in the 4 to 8 cycles deg(-1) range. Patients with bilateral lesions were impaired in saturation discrimination. Luminance discrimination was normal in all but two patients, and spatial resolution was uniformly spared. Curvature and line-orientation discrimination were impaired in only one patient, who also had the most difficulty with more basic-level object recognition. We conclude that deficits in luminance, spatial resolution, curvature, line orientation, and contrast at low spatial frequencies are unlikely to contribute to apperceptive prosopagnosia. More relevant may be contrast sensitivity at higher spatial frequencies and the analysis of object spatial structure. Deficits in these functions may impair perception of subtle variations in object shape, and may be one mechanism by which the recognition defect in prosopagnosia can extend to other classes of object subcategorization.[Abstract] [Full Text] [Related] [New Search]