These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells.
    Author: Chen Q, Kaji H, Kanatani M, Sugimoto T, Chihara K.
    Journal: Horm Metab Res; 2004 Oct; 36(10):674-8. PubMed ID: 15523591.
    Abstract:
    The role that androgens play in the regulation of bone metabolism has been substantiated in animals and humans. We previously demonstrated that testosterone inhibits osteoclast differentiation stimulated by parathyroid hormone through the androgen receptor in mouse bone-cell cultures. However, the details of this mechanism are still unknown. The present study was aimed at examining whether testosterone would affect the mRNA levels of osteoprotegerin (OPG) and receptor activator of Nf kappa B ligand (RANKL) in mouse bone-cell cultures as well as mouse osteoblastic cell-line, MC3T3-E1 cells by employing semi-quantitative RT-PCR. Testosterone increased OPG mRNA expression in both mouse bone-cell cultures and MC3T3-E1 cells. 10-8 M PTH-(1-34) as well as 10-8M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibited OPG mRNA expression in mouse bone cells. 10-8 M testosterone antagonized OPG mRNA expression inhibited by 10-8 M PTH-(1-34), but failed to affect OPG mRNA expression inhibited by 10-8 M 1,25(OH)2D3. 10-8 M alpha-dehydrotestosterone, a non-aromatizable androgen, increased OPG mRNA expression. On the other hand, testosterone did not affect RANKL mRNA expression in MC3T3-E1 or mouse bone cells. In conclusion, the present study demonstrated that testosterone increased OPG mRNA expression in mouse bone-cell cultures and the osteoblastic cell line. These effects are likely to take place through the androgen receptor.
    [Abstract] [Full Text] [Related] [New Search]